Click here to view cell apoptosis assay products

(KO Validated) Caspase-3 Polyclonal Antibody

  • Cat.No.:E-AB-60646

  • Host: Rabbit
  • Reactivity: H,M,R
  • Applications: WB,IHC

To Purchase E-AB-60646

Size:
  • 60μL
  • 120μL
  • 200μL
Price: $220
Qty:

Test Application

  • Verified Samples

    Reactivity Application
    Human WB
    ( Jurkat,293T, )

    Western blot analysis of extracts of Jurkat cells using Caspase-3 Polyclonal Antibody at dilution of 1:1000.

    Western blot analysis of extracts from normal (control) and Caspase-3 knockout (KO) 293T cells using Caspase-3 Polyclonal Antibody at dilution of 1:1000.

    IHC
    ( tonsil, )

    Immunohistochemistry of paraffin-embedded Human tonsil using Caspase-3 Polyclonal Antibody at dilution of 1:100 (40x lens).

    Rat IHC
    ( spleen, )

    Immunohistochemistry of paraffin-embedded Rat spleen using Caspase-3 Polyclonal Antibody at dilution of 1:100 (40x lens).

  • Dilution

    WB 1:500-1:2000
    IHC 1:50-1:200

Preparation of protein samples

1.Protein extraction

1)For tissue sample
a. Take the samples, wash the tissue thoroughly with pre-cooled PBS (0.01 M, pH=7.4)(Cat# E-BC-R187) to remove the surface blood and internal debris.
b. Weigh and smash the tissue, add an appropriate ratio of RIPA Lysis Buffer (Cat# E-BC-R327)(add 10 μL PMSF and 10 μL Na3VO4 to each 1 mL RIPA Lysis) and homogenizely lyse the tissue.
It is recommended to homogenize according to the ratio of tissue weight: RIPA volume = 3:10. For example, add 1 mL RIPA Lysis Buffer to 0.3 g tissue sample, the specific volume can be adjusted according to experimental requirements.
c. Shake and lyse on the ice for 30 min after homogenization. And then sonicate the sample for 1 min (under ice water bath conditions) with 2 s’ sonication and 2 s’ intervals to make cells fully lysis and reduce the viscosity of sample.
d. Centrifuge at 12,000 rpm for 10 min at 4℃.
e. Take the supernatant and measure the protein concentration mentioned in step2.

2)For cell sample
a. Collect the cells, wash them thoroughly with pre-cooled PBS (0.01 M, pH=7.4) to remove the medium off (it is generally recommended to wash 3 times).
b. Add an appropriate ratio of RIPA Lysate Buffer (10 μL PMSF and 10 μL Na3VO4 in each 1 mL RIPA Lysis) and lyse on the ice for 30 min.
It is recommended to add 0.1 mL of RIPA Lysis Buffer to each well of a 6-well plates (the protein content in different cells may vary, and the volume of the lysate added can be appropriately adjusted).
c. Sonicate the sample for 1 min (under ice water bath conditions) with 2 s’ sonication and 2 s’ intervals to make cells fully lyse and reduce viscosity of sample.
d. Centrifuge at 12,000 rpm for 10 min at 4℃.
e. Take the supernatant and measure the protein concentration mentioned in step2.

2.Measurement of protein concentration
By the BCA method (see the Total Protein Colorimetric Assay Kit (Cat# E-BC-K318) instructions).

3.Boiling the samples
Adjust the protein concentration with PBS Buffer. Add 5 × SDS Loading Buffer (Cat# E-BC-R288) with the ratio of the protein sample: 5 × SDS Loading Buffer = 4:1 and boil the mixture for 10 min. Centrifuge at 12,000 rpm for 2 min and collect the supernatant. The denatured protein can be employed to Western Blot experiments or stored at -20℃ or -80℃.

Note: It is recommended that the total protein loading amount of test sample is about 50 μg in each well. Try to make the loading volume of each sample close to 10 μL.

Electrophoresis

1.According to the molecular weight of the target protein, prepare 0% separation gel. Add the test sample to each well, and add 5 μL of Pre-stained Protein Marker (Cat# E-BC-R273)to a reserved well in order to verify the target molecular weight and the extent of membrane transfer. Add Electrophoresis Buffer ( Cat# E-BC-R331) and start electrophoresis.

2.Electrophoresis at 80v when the samples are in stacking gel, then convert to 120v when the blue flow into the separating gel. Electrophoresis time is about 2-3 h till bromophenol blue reaches the bottom of the gel.

Transfer Membrane

1.Choose the PVDF Membrane (Cat# E-BC-R266) with a pore size of μm according to the molecular weight of the target protein. Soak the PVDF Membrane in methanol for 1 min to activate it, and then soak the PVDF Membrane in the Transmembrane Buffer (Cat# E-BC-R333), the filter paper and fiber mat must be soaked in the Transmembrane Buffer for use too.

2.Follow manufacture instructions of Transfer System for wet, semi-dry, or dry transfer.

Incubation of antibodies

1.Soak the PVDF Membrane with TBST Buffer (Cat# E-BC-R335) containing 5% Skim Milk Powder as blocking buffer and block the membrane at room temperature for .

2.According to the recommended primary antibody dilution ratio, use the TBST Buffer containing 5% Skim Milk Powder to dilute the Caspase-3 Antibody at , soak the PVDF Membrane in the primary antibody working solution, incubate overnight at 4 ℃, and gently shake.

3.Wash the PVDF Membrane with TBST Buffer for .

4.According to the recommended secondary antibody dilution ratio, use a TBST Buffer solution containing 2% Skim Milk Powder to dilute Goat Anti-Rabbit IgG (H+L) (peroxidase/HRP conjugated) (Cat# E-AB-1003) at . Incubate at room temperature for 1 h on a shaker.

5.Wash the PVDF Membrane with TBST Buffer for .

Detection

1.Mix A and B in the Excellent Chemiluminescent Substrate Detection kit (Cat# E-BC-R347) at the ratio of 1:1 as working solution.

2.Take out the PVDF Membrane from TBST Buffer and absorb the liquid with the filter paper. Pave the PVDF Membrane on the detection machine, add ECL working solution continuously on the PVDF Membrane, discharge the bubble and detect the result.

3.Adjust the contrast and the exposure time to get the best image.

Appendix

Product Details

Isotype IgG
Concentration 1mg/mL
Storage Store at -20°C. Avoid freeze / thaw cycles.
Buffer PBS with 0.02% sodium azide, 50% glycerol, pH7.3.
Purification Method Affinity purification
Research Areas Cancer, Cell Biology, Metabolism, Neuroscience
Conjugation Unconjugated

Immunogen Details

Immunogen Recombinant fusion protein of human Caspase-3 (NP_004337.2).
Abbre Caspase-3
Synonyms CPP32,CPP32B,SCA-1,Active Caspase 3,CASP3,active Caspase-3,Caspase 3,Caspase-3 p12,caspase-3
Swissprot P42574
Gene ID 836
Calculated MW 31kDa
Observed MW 17kDa/35kDa

Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include:

1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein.

2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes.

3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1.

4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids).

5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers.

If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane.

Cellular Localization Cytoplasm.
Tissue Specificity Highly expressed in lung, spleen, heart, liver and kidney. Moderate levels in brain and skeletal muscle, and low in testis. Also found in many cell lines, highest expression in cells of the immune system.

Background

This gene encodes a protein which is a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce two subunits, large and small, that dimerize to form the active enzyme. This protein cleaves and activates caspases 6, 7 and 9, and the protein itself is processed by caspases 8, 9 and 10. It is the predominant caspase involved in the cleavage of amyloid-beta 4A precursor protein, which is associated with neuronal death in Alzheimer's disease. Alternative splicing of this gene results in two transcript variants that encode the same protein.

Citations

  1. Journal of Diabetes and Metabolic Disorders (2022)
    Experimental and molecular docking studies of quercetin and vitamin E with diabetes-associated mitochondrial-ATPase as anti-apoptotic therapeutic strategies

    DOI: 10.1007/s40200-022-01132-x

    PMID: 36404854

    Sample: Liver
  2. ONCOLOGY REPORTS (2016) IF: 2.486
    HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma

    DOI: 10.3892/or.2016.4811

    Sample: Non-Small Cell Lung Carcinoma (Nsclc) Cell Line A5
  3. ONCOLOGY REPORTS (2017) IF: 2.662
    ACY-1215 accelerates vemurafenib induced cell death of BRAF-mutant melanoma cells via induction of ER stress and inhibition of ERK activation

    DOI: 10.3892/or.2016.5340

    Sample: A375 Cell
Show AllShorten

Reviews/Q&A

  • Show all
  • Reviews
  • Q&A
... Show All Show Less

People Also Bought

Apply for 10 Test Free Trial FCM Antibody
*Product Name:
*Catalog Number:
*Name:
*Email:
*Message:
*Country:
*When will you use it?

*Captcha: